Symmetric Pascal matrices modulo p

نویسندگان
چکیده

منابع مشابه

Symmetric Pascal matrices modulo p

T =  1 1 1 1 2 1 1 3 3 1 .. . . .  = exp  0 1 0 0 2 0 0 3 0 . . .  with coefficients ti,j = (i j ) . This shows that det(P (n)) = 1 and that P (n) is positive definite for all n ∈ N. It implies furthermore that the characteristic polynomial det(tI(n)−P (n)) = ∑ k=0 αkt k (where I(n) denotes the identity matrix of order n) of P (n) has only positive real roots. The in...

متن کامل

THE INVERSE OF THE PASCAL LOWER TRIANGULAR MATRIX MODULO p

Let L(n)p be the Pascal lower triangular matrix with coefficients `i j ́ (mod p), 0 ≤ i, j < n. In this paper, we found the inverse of L(n)p modulo p. In fact, we generalize a result due to David Callan [4].

متن کامل

Eigenvalues of Hadamard powers of large symmetric Pascal matrices

Let Sn be the positive real symmetric matrix of order n with (i, j ) entry equal to ( i + j − 2 j − 1 ) , and let x be a positive real number. Eigenvalues of the Hadamard (or entry wise) power S n are considered. In particular for k a positive integer, it is shown that both the Perron root and the trace of S n are approximately equal to 4 4k−1 ( 2n− 2 n− 1 )k . © 2005 Elsevier Inc. All rights r...

متن کامل

Pascal Matrices

Every polynomial of degree n has n roots; every continuous function on [0, 1] attains its maximum; every real symmetric matrix has a complete set of orthonormal eigenvectors. “General theorems” are a big part of the mathematics we know. We can hardly resist the urge to generalize further! Remove hypotheses, make the theorem tighter and more difficult, include more functions, move into Hilbert s...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2004

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2003.06.001